Powered By Blogger

Sunday, April 26, 2009

Stethoscopes Acoustic

Acoustic

Acoustic Stethoscope

Acoustic stethoscopes are familiar to most people, and operate on the transmission of sound from the chest piece, via air-filled hollow tubes, to the listener's ears. The chestpiece usually consists of two sides that can be placed against the patient for sensing sound — a diaphragm (plastic disc) or bell (hollow cup). If the diaphragm is placed on the patient, body sounds vibrate the diaphragm, creating acoustic pressure waves which travel up the tubing to the listener's ears. If the bell is placed on the patient, the vibrations of the skin directly produce acoustic pressure waves traveling up to the listener's ears. The bell transmits low frequency sounds, while the diaphragm transmits higher frequency sounds. This 2-sided stethoscope was invented by Rappaport and Sprague in the early part of the 20th century. One problem with acoustic stethoscopes was that the sound level is extremely low. This problem was surmounted in 1999 with the invention of the stratified continuous (inner) lumen, and the kinetic acoustic mechanism in 2002. Acoustic stethoscopes are the most commonly used. A recent independent review evaluated 12 common acoustic stethoscopes on the basis of loudness, clarity, and ergonomics. They did acoustic laboratory testing and recorded heart sounds on volunteers. The results are listed by brand and model.

Maintenance

The flexible vinyl, rubber and plastic parts of stethoscopes should be kept away from solvents, including alcohol and soap. Solvents can have detrimental effects including accelerating the natural aging process by dissolving the plasticizers that keep these parts flexible and looking new.

In addition, when they are manufactured stethoscopes with two sided chestpieces are lubricated where the chestpiece rotates around the stem and need to be re-lubricated periodically, just like any other machine. If these moving parts are not lubricated they grind together and ruin the fine tolerances required for the proper acoustic performance of the stethoscope. Cleaning the stethoscope will also remove lubricants making periodic lubrication essential.

Be careful to use only products that have been tested to be safe and effective for cleaning stethoscopes and other medical instruments.

History

Stethoscope was invented in France in 1816 by René-Théophile-Hyacinthe Laennec at the Necker-Enfants Malades Hospital in Paris. It consisted of a wooden tube and was monaural. His device was similar to the common ear trumpet, a historical form of hearing aid; indeed, his invention was almost indistinguishable in structure and function from the trumpet, which was commonly called a "microphone". In 1851, Arthur Leared invented a binaural stethoscope, and in 1852 George Cammann perfected the design of the instrument for commercial production, which has become the standard ever since. Cammann also authored a major treatise on diagnosis by auscultation, which the refined binaural stethoscope made possible. By 1873, there were descriptions of a differential stethoscope that could connect to slightly different locations to create a slight stereo effect, though this did not become a standard tool in clinical practice.

Rappaport and Sprague designed a new stethoscope in the 1940s which became the standard by which other stethoscopes are measured. The Rappaport-Sprague was later made by Hewlett-Packard. HP's medical products division was spun off as Agilent Technologies, Inc. Agilent was purchased by Philips which became Philips Medical Systems, before the walnut-boxed, $300, original Rappaport-Sprague stethoscope was finally abandoned ca. 2004, along with Philips' brand (manufactured by Andromed, of Montreal, Canada) electronic stethoscope model. Today there are still cardiologists who consider the original Rappaport-Sprague to be the finest acoustic stethoscope. Rappaport-Sprague copies made in China currently retail for about US$20.00. The Rappaport-Sprague model stethoscope was heavy and short (18"-24") with an antiquated appearance recognizable by their two large independent latex rubber tubes connecting an exposed-leaf-spring-joined-pair of opposing "f"-shaped chrome-plated brass binaural ear tubes with a dual-head chest piece.

Several other minor refinements were made to stethoscopes, until in the early 1960s Dr. David Littmann, a Harvard Medical School professor, created a new stethoscope that was lighter than previous models and had improved acoustics. In the late 1970s, 3M-Littmann introduced the tunable diaphragm: a very hard (G-10) glass-epoxy resin diaphragm member with an overmolded silicone flexible acoustic surround which permitted increased excursion of the diaphragm member in a "z"-axis with respect to the plane of the sound collecting area. The left shift to a lower resonant frequency increases the volume of some low frequency sounds due to the longer waves propagated by the increased excursion of the hard diaphragm member suspended in the concentric acountic surround. Conversely, restricting excursion of the diaphragm by pressing the stethoscope diaphragm surface firmly against the anatomical area overlying the physiological sounds of interest, the acoustic surround could also be used to dampen excursion of the diaphragm in response to "z"-axis pressure against a concentric fret. This raises the frequency bias by shortening the wavelength to auscultate a higher range of physiological sounds. 3-M Littmann is also credited with a collapsible mold frame for sludge molding a single column bifurcating stethoscope tube with an internal septum dividing the single column stethoscope tube into discrete left and right binaural channels (AKA "cardiology tubing"; including a covered, or internal leaf spring-binaural ear tube connector).

In 1999, Richard Deslauriers patented the first external noise reducing stethoscope, the DRG Puretone. It featured two parallel lumens containing two steel coils which dissipated infiltrating noise as inaudible heat energy. The steel coil "insulation" added .30lb to each stethoscope. In 2005, DRG's diagnostics division was acquired by TRIMLINE Medical Products. Between 1998-2007 Marc Werblud, a disabled paramedic/medical student created a lightweight 32" long acoustic noise cancelling stethoscope which improved sound quality, and reduced neck strain. The acoustic properties of the specific materials used to make stethoscope components were first tested to determine their 'resident frequency'. The results of individual acoustical component materials tests revealed how their collective interactions determine the instrument's dominant tonal character and frequency response of the stethoscope, yielding several high fidelity and acoustic noise cancelling stethoscope models. Some models weighed as little as 133 grams (4.7 oz) - half the weight of common cardiology stethoscopes from the 1960s and 1970s. The new models also included a unique set of stethoscope diaphragms which increased frequency response, and could be sanitarily changed for each patient.

Until his death in 2007, Georgetown University Professor W. Proctor Harvey (b. 1917) was the name most synonymous with the stethoscope and considered the nation's most skilled practitioner of auscultation, the ability to detect cardiac ailments by listening to the sounds of the heart. Dr. Harvey's incredible gift was being able to make sound clinical diagnoses from basic clinical examinations and the bedside using only an acoustic stethoscope. Dr. Harvey elevated the discipline of cardiovascular diagnosis to an art form. He taught differential auscultation using classical music to train a generation of clinicians to diagnose the heart by first learning to hear the individual instrument voices within a symphony. Harvey invented acoustic stethoscopes under the Tycos brand name notably, the Harvey Triple-head; and the "stethophone", the first electronic amplification auscultation device.

Image


Stethoscope

From Wikipedia, the free encyclopedia



The stethoscope (from Greek στηθοσκόπιο, of στήθος, stéthos - chest and σκοπή, skopé - examination) is an acoustic medical device for auscultation, or listening to the internal sounds of an animal body. It is often used to listen to heart sounds. It is also used to listen to intestines and blood flow in arteries and veins. Less commonly, "mechanic's stethoscopes" are used to listen to internal sounds made by machines, such as diagnosing a malfunctioning automobile engine by listening to the sounds of its internal parts. Stethoscopes can also be used to check scientific vacuum chambers for leaks, and for various other small-scale acoustic monitoring tasks.